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ABSTRACT

This paper provides a simple, efficient, and robust numerical technique
for solving two-dimensional incompressible steady viscous flows at moderate-
to-high Reynolds numbers. The proposed approach employs an incremental
multigrid method and an extrapolation procedure based on minimum residual
concepts to accelerate the convergence rate of a robust block-line-Gauss—
Seidel solver for the vorticity-stream function Navier-Stokes equations.

Results are presented for the driven cavity flow problem using uniform
and nonuniform grids and for the flow past a backward facing step in a
channel. For this second problem, mesh refinement and Richardson
extrapolation are used to obtain useful benchmark solutions in the full range

of Reynolds numbers at which steady laminar flow is established.
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INTRODUCTION

This paper 1s concerned with the simulation of two-dimensional
incompressible steady laminar separated flows at moderate-to-high Reynolds
numbers (Re), using a simple, efficient, and robust numerical technique.
Among the many numerical methods developed for the incompressible Navier-
Stokes equations, those recently employed to solve high Re steady separated
flows are very complex and sophisticated. For example, (i) Ghia et al. [1]
use the cumbersome coupled strongly implicit method as a robust smoother for
the already involved full-approximation-storage, full-multigrid method of
Brandt [2], and (ii) Schreiber and Keller [3] solve a fourth order nonlinear
problem for the stream function by a sequence of Newton and chord iterationmns,
and use a costly L-U factorization with partial pivoting to solve the large
sparse linear systems associated with the Newton iteration. In both
techniques, the solution at a lower value of Re 1is to be used effectively to
generate a sufficiently good initial condition. Therefore, it appears
worthwhile to provide a numerical technique for solving high-Re separated
flows, which 1s possibly as powerful and efficient as the best methods
available to date but much simpler to implement and to use.

In the 1last few years, the second author has developed approximate
factorization [4] and line relaxation [5] methods for solving the steady-state
vorticity-stream function Navier-Stokes equatiomns. These methods employ a
two-level implicit Euler time stepping and the delta form [6] to discretize
and linearize in time the unsteady governing equations and make effective use
of a deferred correction strategy for the finite-difference spatial
discretization; namely, second-order—accurate central differences are used for

all spatial derivatives except the advection terms in the left hand side (LHS)



implicit operator, which are discretized using first-order—accurate upwind
differences. In this way, an artifical viscosity is introduced which 1is
proportional to a time derivative and thus vanishes as the sought steady-state
solution is reached (see Appendix A). Also, the large 2x2 block-pentadiagonal
matrix associated with the LHS implicit operator is diagonally dominant, so
that the Alternating Direction Implicit (ADI) [4] or line Gauss-Seidel (LGS)
[{5] solution procedures enjoy the robustness and stability of upwind schemes
and the accuracy of central-difference schemes. Both methods are very simple
and have been reasonably successful in computing steady flows at moderate
Reynolds numbers. However, their convergence rate invariably deteriorates
when the computational mesh is refined and/or the Reynolds number 1is
increased. In an attempt to overcome such a limitation, an incremental
multigrid approach has been recently proposed [7], which is particularly
suitable for this type of numerical methods, extremely simple, and does not
require any additional storage with respect to the basic numerical scheme used
as a smoother, nor any sophisticated strategy for cycling among the various
grids. Therefore, it could be a viable alternative to more complicated
multilevel methods. However, its validity has only been demonstrated for a
model problem and is restricted to the case of uniform grids. It seems
therefore necessary and appropriate to assess its merits and deficiencies
versus more difficult problems and to further improve its performance, without
affecting its major merit, namely, its simplicity.

These goals are achieved in this paper, which: (i) provides an improved
version of the incremental multigrid method of [7], capable of handling meshes
with reasonably high stretching; (ii) supplements such a method with an

extrapolation technique based on minimum residual concepts [8] to further




enhance its efficiency; (iii) employs the resulting procedure to provide a
benchmark solution for flow past a backward facing step in a channel in the

full range of Re at which steady laminar flow is established.

NUMERICAL METHOD

The nondimensional vorticity-stream function Navier-Stokes equations are

given in the standard Cartesian coordinate system, for simplicity, as

mt+1pywx—\pxwy—§—e-(w +w_)=0 (1)

v +9  +w=0. ' (2)

In Eqs. (1-2), Re is the Reynolds number, w and ¢ are the vorticity and
the stream function, t is the time, x and y are the horizontal and
vertical Cartesian coordinates, and subscripts indicate partial derivatives.
Equations (1-2) are discretized in time by means of a two level implicit Euler
time stepping and linearized using the delta approach [6], by neglecting terms

of order Az, to give:
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— - - Ay = — (A + A
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where At is the time step, the superscript n indicates the known
solution at the time level th and Aw, AY are the unknowns to be
computed. Equations (3-4) are discretized in space using second-order-

accurate central differences throughout, except for the advection
derivatives Amx, Awy, Amy and wa in the LHS of Eq. (3) which are

discretized using first-order-accurate upwind differences according to the
, n n ,n n
signs of wy’ Wes wx’ wy

block-LGS method [5]. Only block-tridiagonal systems need to be solved along

s and solved approximately by a block-ADI [4] or

each row and column of the computational domain, and the double boundary
condition for V] can be easily imposed to provide the value of the
vorticity at the wall directly (see Appendix B). Two points are of
interest: (i) a relaxation-like time derivative needs to be added to the
stream function equation if an ADI solution procedure is employed [9]; (ii)
the advection terms in the right hand side of Eq. (4) are replaced by the

corresponding conservative form

- ), W) (5)

which has been shown to provide more accurate results (see, e.g., [5]). This
amounts again to employing a deferred correction approach, which is made
particularly elegant and simple to implement by the use of the delta form
[4]. Notice, in fact, that a standard central difference discretization of
Eq. (5) requires values of ¢ from the NW (North-West), SE (South-East), NE
and SW gridpoints in the computational stencil and, if used in the implicit
left hand side operator, would increase the number of nonzero diagonals in the

resulting matrix and reduce its diagonal dominance. After every ADI or LGS




sweep, the solution is advanced as

W, )"+« W, o)™ + Ay, Aw) (6)

and the process is repeated until a satisfactory convergence criterion is met.

In order to describe the multigrid procedure employed in this study, Egs.
(3-4) are rewritten in a more general form, by dropping the superscript n
and introducing superscripts H and h to indicate the current and the

finest grids used in the computations (H = h, 2h, 4h, and 8h)

H
Aw h  H h H h H h H 1 H H
— + - - - —
X wy Amx w Axpy ‘Dx Amy my A\px = (AmXx + Awyy)
(7
_ A . h h h h 1 h h
B Ch[ (wy w )x + (wx W )y * §E'(mxx * wyy)]
H H H_H,_ ,h _ b _ h
Moy, * Db+ Bu' = cﬁ[ Vg " Vgy ~ 0] (8)
where Cg indicates the standard 9-point collection operator, applied as

many times as needed to go from the finest mesh h to the current mesh H.

Starting from an arbitrary initial condition, Eqs. (7-8) are solved on the

finest grid h -- where they coincide with Eqs. (3-4) -- by means of a two
sweep alternating direction block-LGS iteration, to provide Awh, Awh; the
solution mh, wh is updated and Egs. (7-8) are solved on successively

coarser grids (H = 2h, 4h, and 8h); the entire process is repeated until the
finest—-grid residual is reduced to a suitably small value. In more detail, at
every grid level H, the following steps are required by the proposed

multigrid strategy: a) the coefficients 1in the LHS of Eqs. (7-8) are



evaluated at the H-mesh gridpoints using the finest-grid solution (wh, wh)
locally, whereas the RHS steady state residuals are evaluated on the finest
grid h and collected up to the current grid H; b) Eqs. (7-8) are then
solved approximately, using a single sweep of the aforementioned block-LGS
smoother and homogeneous Dirichlet boundary conditions, to provide AwH, AwH;

c) Awh, Awh are evaluated as

@a®, a™ = 1 a®, sy (9)

where Ig is the standard bilinear interpolation operator from the current

grid H to the finest grid h; d) the finest-grid solution is updated as
h h h
R R LI SV VL VAT (10)

e) the vorticity at the boundaries is finally corrected so as to satisfy the
no-slip boundary condition on the finest mesh (see Appendix B). All of the
aforementioned steps are performed twice, with the block-LGS solution method
marching from left to right and from top to bottom of the computational
domain, respectively. A multigrid cycle is shown schematically in Figure 1,
where it is seen to differ from both the more wusual v and saw-tooth
cycles. 1t 1is noteworthy that the proposed methodology is very simple, since
it does not require any logical choices to be made and employs a single free
parameter, namely, the time step At. Furthermore, it does not need any
additional storage with respect to the basic smoother, insofar as only the
finest-grid solution is computed and a single array is used for the deltas at

all grid levels. However, its work per iteration is slightly greater than




that required by most current multigrid methods, due to the additional
interpolations and collections needed to visit and update the finest-grid
solution after every coarse~grid calculation and, due to its extreme
simplicity, it 1is 1likely to be 1less efficient than more sophisticated
multigrid methods.

The present approach, as described above, can be applied without any
modifications to the vorticity-stream function equations written in a general
curvilinear coordinate system £, M. The scale factors and the Jacobian of
the transformation (x, vy) + (£, n) are evaluated once and for all on the
finest mesh and treated as the other variable coefficients in the linearized
discrete equations arising at every grid level. However, numerical
experiments performed for the case of the driven cavity flow problem have
shown that the efficiency of the method rapidly deteriorates as the
computational grid in the physical plane becomes increasingly nonuniform.
Therefore, following the lead of several other workers (see, e.g., [10]), the
9-point collection operator for the residual has been modified so as to use
weighed areas in physical space, and the bilinear interpolation operator has
been modified so as to use distances among gridpoints also in physical
space. More precisely, in order to collect a quantity f from the finest
mesh h to the mesh H = 2h at point P, the standard 9-point collection

operator is given as:

1
= + + 2f, L+ 2f, . o+
Coo £ qg {4fy 4+ 26, S F U 26, 1,4-1

(11)

+ f £ £

i-1,5-1 ¥ 1m0, 5410 F Fien o1 fra1, 1)



whereas the modified collection operator is

2h 1

¢, f= G A, + K, ¥ &) {Al(fi,j FEie,y YRy PR
Az(fi,j + fi+1,i + fi,j—l + f1+1,j—1) + A3(fi,j + fi—l,j + fi,j+l + fi-—l,j+l)

+ + + +

A I ! fi+l,j+1)} (12)

where Al’ A2, A3 and A, are the areas of the four cells surrounding the

gridpoint P (see Figure 2 which shows the 9-point computational stencil in

the physical (x, y) and computational (, n) planes). On the other hand,

in order to interpolate a quantity f at point Q wusing the f; i and
’

f1+2 i values available on the coarser mesh, the standard bilinear
bl

interpolation operator is given as

I2h f > (13)
whereas the modified interpolation operator is

R Rt s U O Rty T T (16)
2h 42 T %

Finally, in order to further enhance the convergence rate of the method,
the following extrapolation technique based on minimum residual concepts [8]
is used, after every k multigrid cycles, to obtain a new initial condition
for the finest-mesh solution. Let f02, f0~l  £0 pe the solution vectors

(the vectors of all w and Y gridpoint values) at the end of the last




three cycles and Rn—2, Rn-l, R™ the corresponding residuals. A new

initial solution £~ 1s obtained as

* - - - -
P 1 + Cl(fn . 1) . Cz(fn 1 _ £ 2) (15)

with ;1 and CZ evaluated as follows. The residual R* is assumed to
depend linearly on Cl and cz, as
* n-1 n-2

R =R+ g (& - Ry 4 ;Z(R“‘l - RY7%) (16)

*
and the dot product R ¢« R is minimized with respect to (9 and %y

to give:
a b Cl d
-7 (17)
b c CZ e
where
a=@&"-r"ly . @ - (18)
b = (Rn"'l - Rn_2) . (Rn - Rn"l) (19)
c = (Rn—l - Rn—Z) . (Rn—l _ Rp—Z) (20)
_ p0-1 n n—-1
d =R « (R - R ) (21)
e = R%L . (71 - g2y, (22)
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It 1is noteworthy that such a procedure, which can be implemented using an
arbitrary number of extrapolation parameters ci [8), is extremely simple
and employs a negligible amount of CPU time with respect to the basic
solver. On the other hand, it requires additional memory, insofar as both the
solution and the residual vectors are needed at previous iteration levels, and
introduces an additional parameter in the proposed numerical method, namely,
the interval of application of the extrapolation procedure, k. However,
memory is not a problem, especially for the present case of two-dimensional
flows and the convergence rate of the method has been found here to be rather
insensitive to the value of k (see also [8]). A final remark is needed. 1In
the present study, both the two-parameter extrapolation described above and
the simpler one based on a single parameter Cl have been employed. The
two-parameter technique has consistently provided better results, but the
efficiency gain achieved with respect to the simpler one-parameter approach
has been rather limited, so that no attempt at using three or more parameters

was made.

RESULTS
The numerical technique, as described in the previous section, has been
applied to solve two viscous flow problems for several values of Re. The

computations were always started from rest and used a nonoptimized time step,

usually equal to one.
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Flow in a driven cavity

The classical driven cavity flow [l1l] was considered at first in order to
assess the performance: (1) of the basic multigrid method for increasing
values of Re, without and with the extrapolation procedure; (ii) and of the
modified method for increasingly nonuniform grids. As far as the first point
is concerned, calculations were performed for Re = 1000 wusing a 129x129
uniform grid and from one to four grid levels, without and with the
extrapolation technique applied every 20 iterations. The convergence
histories are given in Figures 3 and 4, where the logarithm of the (L; norm
of the) vorticity residual is plotted versus the work units, one work unit
being the CPU time required to complete a two-sweep iteration on the finest
mesh. In all cases, the residual has been dropped to machine zero on a Gould
PN9005 computer using single precision arithmetic. It clearly appears that
the multigrid method provides a considerable improvement over the basic
smoother and that the extrapolation technique further enhances its
efficiency. In order to assess the influence of the interval of application
of the extrapolation procedure, k, on the convergence rate of the method,
results have been obtalned for various values of k and are given in Table 1,
as the work units necessary for the vorticity residual to reach 1074,  The
value of k 1is seen to have a minor influence on the convergence rate of the

method (see also [8]) and can thus be chosen somewhat arbitrarily.
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k 10 15 20 25

work units 149 167 145 161

Table 1. Influence of k on the convergence rate of the method

The more difficult Re = 3200 flow case was then considered in order to
further test the robustness of the method. Figure 5 provides the convergence
histories of the basic smoother and of the four-grid multigrid method without
and with the extrapolation procedure applied every 20 iterations. The basic
smoother, although stable, 1is extremely slow to converge and also the
multigrid method experiences rather severe difficulties before being able to
reduce the residual effectively. Also, due to the lack of smoothness in the
convergence history of the scheme, the extrapolation procedure is found to
actually delay convergence. Incidentally, for Re = 10,000, convergence
requires more than 10,000 work units, the extrapolation procedure again being
beneficial. In conclusion, the present multigrid method is extremely robust
but becomes inefficient for very high values of Re.

In order to address the second point of interest, namely, the performance
of the improved method for the case of nonuniform grids, the same driven
cavity problem was considered, again for Re = 1000 and 3200, by mapping the

physical plane into a uniform-grid computational domain using the following

analytical transformation [4], [5]:
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(%) = 0.5 + 0.5 tanh (55 Z 1)1/tanh(C). (23)

For C << 1, the x and y 1lines are practically equally spaced, whereas,
as C 1increases, more and more gridlines are concentrated near the boundaries
of the unit-square physical domain. The governing equations in terms of the £
and n variables are given in [5] and the scale factors and the Jacobian of
the transformation (23) are computed numerically using second-order-accurate
central differences everywhere except at the boundaries, where three-point
one-sided differences are used [5]. 1In the present calculations a 65x65
uniform grid in the E, n computational plane was used, for several values
of C, and a reduced value of the time step, At = 0.2, was always employed,
as already in [5]. The improved four-grid multigrid method converged without
any difficulty for C as high as 1.4, for which the maximum—to-minimum

Ax (Ay) ratio is equal to 4.45. Also, the extrapolation procedure improved
the efficiency of the method for both Re = 1000 and Re = 3200, convergence
to machine zero requiring about 400 and 1000 work units, respectively. For
completeness, the numerical results are given in Table 2 as the maximum values
of the stream function (¢M) and the values of the vorticity at the center
of the moving plate (mC). The corresponding results obtained using
uniform grids of 97x97 and 129x129 gridpoints are also given for
comparison, The 65x65 nonuniform-grid results are as accurate as the
129%129 uniform-grid ones, so that, for the present problem, the nonuniform-—
grid method results to be more effective overall. However, the present
approach is considered to be inadequate to compute external flows requiring

highly stretched grids.



-14-

by we

97x97  uniform .1174 14.95

Re = 1000 129%129 uniform .1180 14.88
65%65 nonuniform .1181 14.88

97x97 uniform .1166 26.98

Re = 3200 129%129 uniform .1187 26.16
65x65 nonuniform .1193 25.96

Table 2. Driven cavity flow results

Flow past a backward facing step

The flow past a backward facing step in a channel, see Figure 6, is a
very interesting problem which has been chosen by the organizers of a GAMM
workshop as the test case for comparing a great number of codes for solving
the incompressible Navier—Stokes equations. From the results presented at the
workshop [12], it clearly appears that for Re > 500 most methods face
convergence difficulties and/or need some kind of upwinding to handle the flow
regions where convection dominates diffusion. Physically, as clearly shown by
the very careful experiments of Armaly et al. [13], the structure of the flow
becomes more and more complicated as Re increases: the flow, which always

separates over the step, reattaches downstream at a distance which increases
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with Re and, for sufficiently high values of Re, a secondary separation
region develops on the wall opposite to the step. This problem was thus
chosen as a severe test for the present approach using central differences for
the RHS steady state residual. The computational domain is limited to the
interior of the channel immediately at the right of the step and a fully
developed (Couette flow) parabolic velocity profile is used as a boundary
condition in the upper half of the left boundary (h/H = 0.5, see Figure 6)
[13, 14]. The proposed approach, without and with the extrapolation technique
has been employed using uniform grids with 49x49, 65x49, 81x49 and 97x49
gridpoints for the cases Re = 200, 400, 600 and 800, respectively, the
downstream boundary condition being set at a distance from the step equal to
7.5, 10, 12.5 and 15. The nondimensional height of the channel H 1is equal
to 1 and the maximum value of the nondimensional longitudinal velocity
component at inlet is equal to 1.5 [l4]. At the outlet of the channel,
second-order—accurate three-point homogeneous Neumann boundary conditions are
used for both ¢ and w, to minimize the upstream influence due to imposing
an asymptotic condition at a finite downstream distance. At the inlet and at
all of the walls, standard no~slip conditions are prescribed, as shown in
Appendix B. 1In particular, at the inlet, wyy’ which is discontinuous at the
corner C, is evaluated analytically, with the gridpoint C obviously being
considered part of the inlet-flow domain (wyy = 12). In all cases, no
convergence difficulty was encountered, again starting all computations from
rest and always using At = 1. The convergence histories for the method,
using from 1 to 4 grid levels, without and with the extrapolation applied
every 20 iterations, are given in Figures 7 and 8 for Re = 200, and in

Figures 9 and 10 for Re = 800. For the simpler Re = 200 flow case, using a
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rather coarse 49x49 finest mesh, the multigrid approach reaches its peak
efficiency when using 3 grid levels, without the extrapolation, and 2 grid
levels, with the extrapolation. For the more difficult Re = 800 flow case,
using a 97x49 finest-grid, the efficiency of the multigrid method always
improves with 1increasing number of grid levels. In all cases, the
extrapolation significantly improves the performance of the approach.

An efficient and second-order—accurate method being available, solutions
were obtained for all four cases doubling the number of mesh intervals in both
directions, so as to provide a benchmark solution for this very interesting
problem. Figures 11 and 12 show the 1lower and upper walls vorticity
distributions obtained using 97x97, 129x%97, 161x97 and 193x97 gridpoints
for Re = 200, 400, 600 and 800, respectively. On the same figures, the
results obtained using the coarser grids are also given as symbols. It
appears that for Re = 200 and 400 grid convergence has been achieved,
whereas for Re = 600 and 800 further mesh refinement is probably
warranted. However, the two different grid results in Figures 11 and 12 are
reasonably close, so that Richardson extrapolation can be used with confidence
to obtain a benchmark solution: Table 3 provides the values of the locations
of the reattachment point for the primary separation bubble (X1R) and of the
separation and reattachment of the secondary separation bubble (X2S, X2R),
divided by the height of the step h [14], obtained using linear interpolation
between the two gridpoints at which the wall vorticity changes sign and
Richardson extrapolation to zero step size. Incidentally, the numerical

results used for the extrapolation are converged to machine zero, using double

precision arithmetic.
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Re 200 400 600 800
X1R/h 5.34 8.63 10.72 12.16

Table 3. Benchmark Results

It needs to be remarked that, for all values of Re, the far downstream
values of the vorticity on the lower and upper walls should be 3 and -3,
respectively. From the results of Figures 11 and 12, one may thus believe
that the outflow boundary conditions have not been imposed far enough
downstream, especially for the higher values of Re. Therefore, the coarser
grid computations were repeated for the cases Re = 200 and Re = 800, moving
the outflow boundary-condition 1locations to x = 15 and x = 25,
respectively, and increasing the number of longitudinal gridpoints to maintain
the same value of Ax. The results for the lower and upper walls vorticity
are given in Figures 13 and 14 for both sets of calculations. The vorticity
is seen to tend to its asymptotic value correctly and the results obtained
using the two different locations for the outflow boundary conditions are in
perfect agreement. The usefulness of using outflow conditions of Neumann type
is thus clearly demonstrated so as the validity of the results in Table 3 as a

benchmark solution.
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CONCLUSIONS

A simple, robust, and efficient method has been developed for solving
two—dimensional steady viscous flows. An incremental alternating direction,
block-line-Gauss-Seidel relaxation method using first-order—accurate upwind
differences in the left hand side implicit operator and second-order-accurate
central differences in the right—-hand-side steady-state residual is used as
smoother within a very simple multigrid algorithm, supplemented by an
extrapolation procedure based on minimum residual concepts. The proposed
technique has been tested versus the classical driven cavity flow, for values
of the Reynolds number (Re) as high as 10,000, and used to provide useful
benchmark solutions for flow past a backward facing step in a channel, for
values of Re covering the full range at which steady laminar flow exists. The
convergence rate of the method, which always starts from an arbitrary initial
condition and marches towards steady state using a simple multigrid cycle
without any optimization, logical choices or adjustable parameters, is very
satisfactory for moderate-to-high values of Re. However, a more

sophisticated approach is required for very high values of Re and/or highly

nonuniform grids.
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APPENDIX A
Consider the linear advection diffusion equation
u, tcu -eu = 0 (Al)
where ¢ 1is a function of x and can be either positive or negative. The

discrete form of Eq. (Al) using the delta approach and a deferred correction

strategy as done in this paper for the vorticity-stream function equations is

Aui .\ ¢y + Icil Aui - Aui_1 .\ ¢y - Icil Aui+1 - Aui
At 2 Ax 2 Ax
(A2)
Bujyp = Aug *+Buy e e e s T e 0!
T € ) B T/ v )
Ax Ax
The two incremental advection terms in Eq. (A2) can be written as
bugy — Auy _ Jcil Ax Auy_; = 28uy + Auyy, (43)
€1 28% 2 2

Ax

so that Eq. (A2) 1is easily seen to be an implicit central-in-space finite

difference discretization of Eq. (Al), plus an artificial viscosity term which
is the backward-in-time central-in-space finite difference approximation of

-Icil Ax At

2 Yxt (a8)
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and thus vanishes identically at steady state. Similarly, it is seen that the
four advective terms in the LHS of Eq. (3) are equivalent to the corresponding
central difference approximations plus artificial viscosity terms which vanish
at steady state. It is to be pointed out that the discretization used in Eq.
(A2) is the delta form of the one proposed by Khosla and Rubin [16] and is

easily seen to provide a diagonally dominant matrix for the LHS dimplicit

operator.
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APPENDIX B

Let us consider the gridpoints adjacent to the boundary line BB, together
with a mirror image point, O, outside the computational domain [11] as shown
in Figure 15. At gridpoint 1, the double specification for the stream

function is given as:

by =a (81)

Equation (B2) 1is discretized wusing a third-order-accurate four point

difference

(=93 + 69y =39 - 29yq)

% = b. (B3)

In order to eliminate the additional unknown wo, the steady state stream

funtion equation is also used at the boundary gridpoint 1 [I11]

q,xx + xpyy +w =0 (B4)

which is discretized as:

b - 29 + ¢
0 21 2+¢ +w1=0 (BS)
Ax yy
where the ¢yy term is left unchanged for conveunience. By combining Egs.

(B3) and (B5), the following equation for the vorticity at the boundary, Wy

——— -~
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is obtained:
6 bax +7 ¢, -8y, + ¢
wy = - " + 1 2 3

yy 2 sz

(B6)

Equations (Bl) and (B6) are written in delta form and used, together with the
internal-gridpoints discrete equations and the corresponding conditions for
the RHS boundary, to provide a 2x2 block~-tridiagonal system which is solved
very efficiently by block-tridiagonal elimination. Notice that in Eq. (B6)

wyy is either zero, if line BB is a solid bouandary, or is known, if line BB
is a flow-inlet boundary. Also, from Eq. (B6), it clearly appears that a
third order accurate discretization of Eq. (B2) is needed to obtain a second
order accurate W) (see also [1}). Finally, in the present multigrid
method, Eq. (B6) and the corresponding ones are also used to correct the

finest-grid solution at the boundaries, after every coarse-to-fine-grid

interpolation.
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FIGURE CAPTIONS

Schematic of the multigrid cycle.

Finite difference stencil in physical (x,y) and
computational (§,n) planes.

Convergence histories of the multigrid method using 1, 2, 3 and
4 grid levels for Re = 1000.

Convergence histories of the multigrid method with extrapolation

using 1, 2, 3 and 4 grid levels for Re = 1000.

Convergence histories of the basic solver and of the four-grid
multigrid without and with extrapolation (dotted line) for Re =
3200.

Flow past a backward facing step in a channel: geometry and

boundary conditions.

Convergence histories of the multigrid method using 1, 2, 3 and
4 grid levels for Re = 200,

Convergence histories of the multigrid method with extrapolation
using 1, 2, 3 and 4 grid levels for Re = 200.

Convergence histories of the multigrid method using 1, 2, 3 and
4 grid levels for Re = 800,

Convergence histories of the multigrid method with extrapolation

using 1, 2, 3 and 4 grid levels for Re = 800.

Effect of grid refinement on the lower wall vorticity for

various values of Re.
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Effect of grid refinement on the upper wall vorticity for

various values of Re.

Effect of downstream boundary condition location on the lower

wall vorticity for two values of Re.

Effect of downstream boundary condition location on the upper

wall vorticity for two values of Re.

Computational gridpoints around a boundary line.
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